- Definitions and Dimensions of Matrices:
 - A rectangular array of numbers, functions or parameters is called a matrix.
 - A matrix with **dimension** $m \times n$ has m rows and n columns. When we refer to ij-entry, we mean the entry on the *i*th row and *j*th column.
 - We denote matrices with capital letters. The following is the **general representation** of an $m \times n$ matrix A:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• Matrix addition and subtraction:

Let A and B be $m \times n$ matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

Then $A \pm B = [a_{ij} \pm b_{ij}] = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{21} \pm b_{22} & \cdots & a_{2n} \pm b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \cdots & a_{mn} \pm b_{mn} \end{bmatrix}$

Note that matrix addition/subtraction has to be done on matrices with same dimensions and it produces a matrix of the same dimensions with entries that are addition/subtraction of the same corresponding entries of A and B.

• Scalar multiplication:

Let A be a
$$n \times m$$
 matrix $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ and k be a number. Then the Scalar

multiplication of the matrix A by k is

$$kA = k[a_{ij}] = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix} = [ka_{ij}]$$

- Some properties of matrix addition/subtraction:
 - (1) Commutative Property Of Addition: A + B = B + A
 - (2) Associative Property of Addition A + (B + C) = (A + B) + C

• The identity of matrix addition The $m \times n$ matrix $O_{m \times n}$ is the following matrix:

$$O_{m \times n} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Note that $O_{m \times n} + A_{m \times n} = A_{m \times n}$.

• Matrix Multiplication: The matrix multiplication is only defined if the number of columns of the first matrix is equal to number of rows of the second matrix.

Let A of be an $m \times n$ matrix and B be an $n \times k$ matrix, then the dimension of matrix AB is $m \times k$.

 $(A_{m \times n} B_{n \times k} = A B_{m \times k})$ The *i*th row, *j*th entry of AB is the product of *i*th row of A and *j*th column of B as described below:

		B	
Example: Here is the multiplication of $A_{2\times 3}$ by $B_{3\times 3}$:	$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}}_{A}$	$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$	$egin{array}{c} b_{13} \ b_{23} \ b_{33} \end{array}$
$AB = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}$	$a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{13} + a_{22}b_{23}$	$+ a_{13}b_{33} \\ + a_{23}b_{33}$	
Note that the matrix BA is not defined			

Note that the matrix BA is not defined.

• The identity of matrix multiplication

The identity matrix I_n or $I_{n \times n}$ is a square matrix of size n where all entries on the major diagonal are one and all the other entries are zero.

	[1	0	0		0]
	0	1	0	•••	0
$I_n =$	0	0	1		0
	:	÷	÷	۰.	÷
	0	0	0	•••	1

• Important properties of the identity matrix

Given any $m \times n$ matrix	$I_m A = A$	$AI_n = A$
A the following is true.		

• Equal matrices: Let A and B be two $m \times n$ matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} \text{ Then } A = B \text{ means}$$

that $a_{ij} = b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

1. What is a general representation for a 2×3 matrix?

- 2. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 5 & 0 \end{bmatrix}$.
 - (a) What is the dimension of A?

(b) What is a_{23} entry of matrix A?

3. Determine which of the following operations is defined?

(a)	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	-2 5	$\begin{bmatrix} 3 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	(c)	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	-2 5	3 0]	[3 5	$\begin{bmatrix} 11\\2 \end{bmatrix}$
(b)	$\left[\begin{array}{c}1\\2\end{array}\right]$	3 0	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 5 & 1 \end{bmatrix}$	(d)	$\left[\begin{array}{c} 0\\ 0\end{array}\right]$	0 0] [3] [5	11 2	7 1]

4. Perform the following matrix operations.

(a)
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 5 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 11 & 1 \\ 5 & 2 & 1 \end{bmatrix}$$

(b) $3 \begin{bmatrix} 3 & 11 & 7 \\ 5 & 2 & 1 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & -2 & 3 \\ 2 & 5 & 0 \end{bmatrix} - \begin{bmatrix} 3 & 11 & 1 \\ 5 & 2 & 1 \end{bmatrix}$
(d) $\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$

5. Find AB and BA for the following choices of matrix A and matrix B, or say that they are not defined. In case that they are both defined, determine if AB = BA or not.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 5 & 0.6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$
(b) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$

6. Let $A = \begin{bmatrix} 1 & 3 \\ 5 & 6 \\ 0.5 & 1 \end{bmatrix}$, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Find any of the following multiplication if it is defined.

(a)
$$I_3A$$
 (c) I_2A
(b) AI_3 (d) AI_2

7. (a) Calculate
$$\begin{bmatrix} 1 & 3 & 2 \\ 5 & 6 & 1 \\ 0.5 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
.
(b) Express the matrix equality $\begin{bmatrix} 1 & 3 & 2 \\ 5 & 6 & 1 \\ 0.5 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ in terms of three equations.

Related Videos:

- 1. Example 1: https://mediahub.ku.edu/media/MATH+-+Matrices.m4v/1_pn42m74z
- 2. Example 2: https://mediahub.ku.edu/media/MATH+-+Matrix+Multiplication+1.m4v/1_b0z677nu
- 3. Example 3: https://mediahub.ku.edu/media/MATH+-+Matrix+Multiplication+2.m4v/1_050s1ick

And the second sec