9.5: Matrices and Matrix Operations

- Definitions and Dimensions of Matrices:
- A rectangular array of numbers, functions or parameters is called a matrix.
- A matrix with dimension $m \times n$ has m rows and n columns. When we refer to $i j$-entry, we mean the entry on the i th row and j th column.
- We denote matrices with capital letters. The following is the general representation of an $m \times n$ matrix A:

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- Matrix addition and subtraction:

Let A and B be $m \times n$ matrices:
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$ and $B=\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m 1} & b_{m 2} & \cdots & b_{m n}\end{array}\right]$
Then $A \pm B=\left[a_{i j} \pm b_{i j}\right]=\left[\begin{array}{cccc}a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1 n} \pm b_{1 n} \\ a_{21} \pm b_{21} & a_{21} \pm b_{22} & \cdots & a_{2 n} \pm b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} \pm b_{m 1} & a_{m 2} \pm b_{m 2} & \cdots & a_{m n} \pm b_{m n}\end{array}\right]$
Note that matrix addition/subtraction has to be done on matrices with same dimensions and it produces a matrix of the same dimensions with entries that are addition/subtraction of the same corresponding entries of A and B.

- Scalar multiplication:

Let A be a $n \times m$ matrix $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$ and k be a number. Then the Scalar multiplication of the matrix A by k is

$$
k A=k\left[a_{i j}\right]=\left[\begin{array}{cccc}
k a_{11} & k a_{12} & \cdots & k a_{1 n} \\
k a_{21} & k a_{22} & \cdots & k a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
k a_{m 1} & k a_{m 2} & \cdots & k a_{m n}
\end{array}\right]=\left[k a_{i j}\right]
$$

- Some properties of matrix addition/subtraction:
(1) Commutative Property Of Addition: $A+B=B+A$
(2) Associative Property of Addition $A+(B+C)=(A+B)+C$
- The identity of matrix addition The $m \times n$ matrix $O_{m \times n}$ is the following matrix:

$$
O_{m \times n}=\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Note that $O_{m \times n}+A_{m \times n}=A_{m \times n}$.

- Matrix Multiplication: The matrix multiplication is only defined if the number of columns of the first matrix is equal to number of rows of the second matrix.
Let A of be an $m \times n$ matrix and B be an $n \times k$ matrix, then the dimension of matrix $A B$ is $m \times k$.
$\left(A_{m \times n} B_{n \times k}=A B_{m \times k}\right.$.) The i th row, j th entry of $A B$ is the product of i th row of A and j th column of B as described below:
Example: Here is the multiplication of $A_{2 \times 3}$ by $B_{3 \times 3}: \underbrace{\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]}_{A} \overbrace{\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]}^{B}$
$A B=\left[\begin{array}{lll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33}\end{array}\right]$
Note that the matrix $B A$ is not defined.
- The identity of matrix multiplication

The identity matrix I_{n} or $I_{n \times n}$ is a square matrix of size n where all entries on the major diagonal are one and all the other entries are zero.

$$
I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

- Important properties of the identity matrix
Given any $m \times n$ matrix

$$
I_{m} A=A
$$

$$
A I_{n}=A
$$

A the following is true.

- Equal matrices: Let A and B be two $m \times n$ matrices:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text { and } B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right] \begin{aligned}
& \text { Then } A=B \text { means } \\
& \text { that } a_{i j}=b_{i j} \text { for all } \\
& 1 \leq i \leq m \text { and } 1 \leq j \leq n . ~
\end{aligned}
$$

1. What is a general representation for a 2×3 matrix?
2. Consider the matrix $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 5 & 0\end{array}\right]$.
(a) What is the dimension of A ?
(b) What is a_{23} entry of matrix A ?
3. Determine which of the following operations is defined?
(a) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 5 & 0\end{array}\right]-\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 5 & 0\end{array}\right]\left[\begin{array}{cc}3 & 11 \\ 5 & 2\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 0 & 2\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 5 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ccc}3 & 11 & 7 \\ 5 & 2 & 1\end{array}\right]$
4. Perform the following matrix operations.
(a) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 5 & 0\end{array}\right]+\left[\begin{array}{ccc}3 & 11 & 1 \\ 5 & 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 5 & 0\end{array}\right]-\left[\begin{array}{ccc}3 & 11 & 1 \\ 5 & 2 & 1\end{array}\right]$
(b) $3\left[\begin{array}{ccc}3 & 11 & 7 \\ 5 & 2 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 5 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$
5. Find $A B$ and $B A$ for the following choices of matrix A and matrix B, or say that they are not defined. In case that they are both defined, determine if $A B=B A$ or not.
(a) $A=\left[\begin{array}{cc}1 & 3 \\ 5 & 0.6\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$
6. Let $A=\left[\begin{array}{cc}1 & 3 \\ 5 & 6 \\ 0.5 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Find any of the following multiplication if it is defined.
(a) $I_{3} A$
(c) $I_{2} A$
(b) $A I_{3}$
(d) $A I_{2}$
7. (a) Calculate $\left[\begin{array}{ccc}1 & 3 & 2 \\ 5 & 6 & 1 \\ 0.5 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
(b) Express the matrix equality $\left[\begin{array}{ccc}1 & 3 & 2 \\ 5 & 6 & 1 \\ 0.5 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ in terms of three equations.
8. Example 1: https://mediahub.ku.edu/media/MATH+-+Matrices.m4v/1_pn42m74z
9. Example 2: https://mediahub.ku.edu/media/MATH+-+Matrix+Multiplication+1.m4v/1_b0z677nu
10. Example 3: https://mediahub.ku.edu/media/MATH+-+Matrix+Multiplication+2.m4v/1_050s1.ck -
